
An Introduction to
Userland Networking

operatingsystems.io, London25.11.2014 Franco Fichtner

New Directions in Operating Systems

(0) Author info
(1) Definition
(2) Bottlenecks
(3) Zero copy
(4) Frameworks
(5) Architectures
(6) On the horizon
(7) Reading material

operatingsystems.io, London25.11.2014 Franco Fichtner

Overview

operatingsystems.io, London25.11.2014 Franco Fichtner

"I like nifty things. I read a lot. Sometimes I write stuff."

Author info: Franco

o Chief Software Architect at Packetwerk
o DragonFly BSD committer
o libpeak (bootstrapping code)
o minor: mandoc, manuals, pfSense,
 zmq, netmap, FreeBSD ports
o new BSD firewall project coming soon...

@fitchitis

operatingsystems.io, London25.11.2014 Franco Fichtner

Definition: status quo

o Everbody is doing it, very few talk about it.
o The minority shares viable open source code.
o The networking people have a long history of
 undermining established system design. :)
o No standards API, only shared ideas across
 different hardware and software with varying
 degrees of toolkit size.

operatingsystems.io, London25.11.2014 Franco Fichtner

Definition: motivations

o Speed. (Should go to 11.)
o Complex architectures and code size may clog
 the kernel, cause panics. Stack limitations, etc.
o Multithreading is a lot easier in userland.
o Shared libraries reside in userland.
o Observing context and content on the application
 layer.
o Old school proxies are expensive and maybe
 a wee too opaque.
o Coding is faster and cheaper in userland. Debugging...
o Eventually portability across operating systems.
o Kernel network stack protection.

operatingsystems.io, London25.11.2014 Franco Fichtner

Definition: an attempt

Userland networking is the school of networking
which moves as much of packet receive and
send out of the kernel for performance and
complexity reasons. It currently focuses more on
transit traffic than endpoint traffic, but that may
change. Motivations are plenty.

operatingsystems.io, London25.11.2014 Franco Fichtner

Bottlenecks (1)

o Modern networking is all about alleviating bottlenecks
o Weakest link's throughput equals maximum performance
o A list of examples: sockets, context switches, manual
 memory copy, scheduling, IPC, mutexes, asynchronicity,
 cache misses, memory allocation, bus speed, memory
 access rates, CPU frequency, clock cycles, NUMA, data
 structures and eventually your own production code!

operatingsystems.io, London25.11.2014 Franco Fichtner

Bottlenecks (1)

Everything is a bottleneck. Solving
one issue brings up the next one...

o Modern networking is all about alleviating bottlenecks
o Weakest link's throughput equals maximum performance
o A list of examples: sockets, context switches, manual
 memory copy, scheduling, IPC, mutexes, asynchronicity,
 cache misses, memory allocation, bus speed, memory
 access rates, CPU frequency, clock cycles, NUMA, data
 structures and eventually your own production code!

operatingsystems.io, London25.11.2014 Franco Fichtner

Bottlenecks (2)

 gettimeofday(2) system call -- a simple clock service fail

 o each time the clock is fetched, the maximum
 throughput decreases
 o coalescing calls is better for performance but
 skews the notion of time in your system
 o solution: the clock needs to be piggybacked
 via packet grabbing code
 o god mode: the NIC does the timestamping at
 true nanosecond resolution :)

operatingsystems.io, London25.11.2014 Franco Fichtner

Bottlenecks (3)

o any syscall is bad as it may yield the CPU and
 causes an expensive context switch to happen
o concurrent processes are bad as they steal your
 precious CPU time (no thanks to you, scheduler)
o any performance drop may cause the receive
 buffer to fill up, eventually causing packet drops

operatingsystems.io, London25.11.2014 Franco Fichtner

Zero copy (1)

o zero copy isn't zero
o 1 copy into the memory inbound "from the wire"
o 1 copy out of the memory(*) outbound "to the wire"
o any more than those two should be avoided

(*) let's assume the packet was created by the host

operatingsystems.io, London25.11.2014 Franco Fichtner

Zero copy (1)

Assuming each packet is copied once,
that's the same rate of your bandwidth.

o zero copy isn't zero
o 1 copy into the memory inbound "from the wire"
o 1 copy out of the memory(*) outbound "to the wire"
o any more than those two should be avoided

(*) let's assume the packet was created by the host

operatingsystems.io, London25.11.2014 Franco Fichtner

Zero copy (2)

o solution: memory mapping between userland and kernel
o contiguous ringbuffers, rings/slots or bulk IO
o works great between NIC and userland, not so much
 in conjunction with the kernel (routing, endpoints)

operatingsystems.io, London25.11.2014 Franco Fichtner

Frameworks: DPDK

o Devs: 6WIND/Intel
o OS: Linux, FreeBSD
o License: BSD
o Website: http://www.dpdk.org/
o Pros: speed, stability
o Cons: raw API, Intel hardware only (1G/10G/40G)

http://www.dpdk.org/

operatingsystems.io, London25.11.2014 Franco Fichtner

Frameworks: PF_RING ZC

o Devs: ntop
o OS: Linux
o License: GPL
o Website: http://www.ntop.org/products/pf_ring/
o Pros: balancer API, theoretically cross-vendor
o Cons: bound to 1G/10G Intel hardware ;)

http://www.ntop.org/products/pf_ring/

(*) Realtek, Intel, Chelsio

operatingsystems.io, London25.11.2014 Franco Fichtner

Frameworks: Netmap (1)

o Devs: Luigi Rizzo / Pisa University
o OS: FreeBSD (since 2011), Linux (since 2013)
o License: BSD
o Website: http://info.iet.unipi.it/~luigi/netmap/
o Pros: broad driver support (*), emulation mode
o Cons: uses syscalls for synchronisation, API changes

http://info.iet.unipi.it/~luigi/netmap/

Userland

Kernel

Hardware

Third-Party Libraries

Multithreading

Netmap Layer

Network Driver

Network Adapter

Zero-Copy
Packet Engine

normal mode
 (dev to dev)

operatingsystems.io, London25.11.2014 Franco Fichtner

Frameworks: Netmap (2)

transparent mode
 (dev to host)

Third-Party Libraries

Multithreading

Netmap Layer

Network Driver

Network Adapter

Zero-
Copy

Packet
Engine

IP Routing

Packet Filter

Sockets

Applications

Bottleneck

operatingsystems.io, London25.11.2014 Franco Fichtner

Architecture: traditional use cases

o routing (no peeking)
o connect endpoints
o capture (and peek)

Packet receive (RX) is always great, packet send (TX) differs.

Userland scaling requires a load balancer for > 1G.

operatingsystems.io, London25.11.2014 Franco Fichtner

Architecture: modern use cases

o peek, then: route, load balance, traffic shape/police,
 screen some more, accounting, security stuff, ...

Endpoints are less important. Forwarding is the main operation.

Content/context driven use cases.

Buzz words: IPS, NGFW, UTM, Traffic Manager, etc.

Application Layer (60%)

Transport Layer (30%)

Network Layer (7%)

operatingsystems.io, London25.11.2014 Franco Fichtner

Architecture: "light-weight" stacks

Link Layer (3%)

The network stack focus changed drastically:

Interface/Addresses only
Addresses mostly
Flow tracking, TCP, TLS, SSH
Everything is interesting here

Focus on connections, context, content, even users,
as opposed to routing decisions or endpoint access.

operatingsystems.io, London25.11.2014 Franco Fichtner

Architecture: rules engines

o with vast knowledge comes great chaos
o applications generate immense amounts of data
o describe -> filter -> enforce policies

operatingsystems.io, London25.11.2014 Franco Fichtner

Architecture: rules engines

(1) hardcoding only gets you so far
(2) XML may seem flexible, but it's not
(3) writing good grammar is hard
(4) writing unambiguous grammar is harder
(5) yacc(1)/bison(1) is always right :)

o with vast knowledge comes great chaos
o applications generate immense amounts of data
o describe -> filter -> enforce policies

operatingsystems.io, London25.11.2014 Franco Fichtner

On the horizon: adaptive network stacks (1)

The network layer is the base for the Internet. Can't touch this.

The application layer is vast and well-defined (mostly).

That leaves the transport layer for us to play around with!

o transport protocols are immutable because they are
 embedded into the kernel...
o transport layer creates the backbone for today's
 inspection methods: content and connections...

operatingsystems.io, London25.11.2014 Franco Fichtner

On the horizon: adaptive network stacks (2)

o ...userland network stacks are more flexible
o adaptive transport layer: more protocols, dialects,
 non-standard encryption and obfuscation, renegotiation
o end-to-end negotiation thereof

An easy way to disrupt the status quo in tracking can
be achieved by reordering the TCP header. Two hosts
may talk a standards-compliant TCP, but the connection
can not easily be tracked, because it seems "weird" from
the outside persepective.

operatingsystems.io, London25.11.2014 Franco Fichtner

Reading Material

[1] libpeak: https://github.com/packetwerk/libpeak
[2] S. Gallenmüller, Comparision of Memory Mapping
 Techniques for High-Speed Packet Processing,
 http://t.co/fcL9VMpzjt
[3] L. Rizzo, Netmap: a novel framework for fast packet I/O,
 http://info.iet.unipi.it/~luigi/papers/20120503-netmap-atc12.pdf
[4] P. Kelsey: The FreeBSD TCP/IP Stack as a Userland Library,
 https://www.bsdcan.org/2014/schedule/attachments/
260_libuinet_bsdcan2014.pdf
[5] S. Alcock: lightweight application detection,
 https://github.com/wanduow/libprotoident

https://github.com/packetwerk/libpeak
http://info.iet.unipi.it/~luigi/papers/20120503-netmap-atc12.pdf
https://www.bsdcan.org/2014/schedule/attachments/260_libuinet_bsdcan2014.pdf
https://www.bsdcan.org/2014/schedule/attachments/260_libuinet_bsdcan2014.pdf
https://github.com/wanduow/libprotoident

operatingsystems.io, London25.11.2014 Franco Fichtner

That's it. Thank you! :)

Questions, comments, general thoughts?

	Canvas 1
	Canvas 2
	Canvas 3
	Canvas 24
	Canvas 25
	Canvas 26
	Canvas 4
	Canvas 5
	Canvas 6
	Canvas 7
	Canvas 8
	Canvas 9
	Canvas 10
	Canvas 11
	Canvas 12
	Canvas 13
	Canvas 14
	Canvas 15
	Canvas 16
	Canvas 17
	Canvas 18
	Canvas 19
	Canvas 20
	Canvas 21
	Canvas 22
	Canvas 23

