

New Directions in Operating Systems
November 2014, London

Antti Kantee, Fixup Software Ltd.
pooka@rumpkernel.org

@anttikantee

RUMP KERNELS
and

{why,how} we got here

Motivations

● want to run an application, not an OS
● want a better operating system
● “operating system gets in the way”

FIRST HALF

what is an operating system

Summary of OS's

● drivers
– for enabling applications to run

– n*106 LoC

● optional goop defining relation between drivers
and applications
– for protection, resource sharing, ...

– 103 – 105 LoC

kernel driver

driver

driver

driver

driver

application

application

kernel driver
driver driver

application
application

Server
(“OS”)

driver

driver

kernel

application

application

server

driver

server

driver
server

driver

driver

application

cpu core

driver

application

cpu core

driver

application

cpu core

kernel

driver

driver

driver

driver

application

kernel driver

driver

driver

driver

driver

application

application

SECOND HALF

what is a rump kernel

platform

hypercall interface

 rump
 kernel

hypercall implementation

T
C

P
/I

P

fil
e

sy
st

em
s

de
vi

ce
 d

rv
s

sy
sc

al
ls ...

callers (i.e. “clients”)

rump (n):

small or inferior remnant or offshoot; especially: a
group (as a parliament) carrying on in the name of
the original body after the departure or expulsion
of a large number of its members

rump kernel (n):

small or inferior remnant or offshoot; specifically: a
monolithic OS kernel carrying on in the name of
the original body after the departure or expulsion
of a large number of its subsystems

A rump kernel does not provide
threads, a scheduler, exec, or

virtual memory, nor does it require
privileged mode (or emulation of it)

or interrupts

> runs anywhere
> integrates into other systems

Wait, that doesn't explain where the
drivers come from

< anykernel (NetBSD)

platform

hypercall interface

 rump
 kernel

hypercall implementation

libc

syscall trapsrump kernel calls

application(s)

userspace libraries

T
C

P
/I

P

fil
e

sy
st

em
s

de
vi

ce
 d

rv
s

unmodified
NetBSD code
(~106 lines)

unmodified POSIX
userspace code
(10n lines)

platform-specific
code (~103 lines)

same thread
throughout entire stack

e.g. Genode OS, Xen,
userspace, bare-metal,

sy
sc

al
ls ...

Platform-independent
glue code (~104 lines)glue code

AN EXAMPLE!

THIRD HALF
(with operating systems, expect the unexpected)

how rump kernels happened

ad-hoc shims

Step 1: RUMP (2007)

NetBSD userspace

hypercall implementation

unmodified file system driver

VFS emustubrump kernel

userspace fs framework
(userspace part)

userspace

kernel

file system
driver

userspace fs framework
(kernel part)

application

syscalls, VFS, etc.

Step 2: UKFS (2007)

userspace

kernel

Q: how hard can implementing
a few syscalls be?

A: very

userspace

hypercall implementation

unmodified file system driver

ad-hoc shims

VFS emustubrump kernel

UKFS

application (e.g. fs-utils)

Step 3: a lot
(2008 - 2011)

userspace

hypercall interface

 rump
 kernel

hypercall implementation

T
C

P
/I

P

fil
e

sy
st

em
s

de
vi

ce
 d

rv
s

sy
sc

al
ls ...

glue code

syscalls, vfs, etc.

hijack

application / service

● support for all driver
subsystems

● isolation from the host
● stable hypercall interface
● anykernel completed
● production quality
● rump kernels used for

testing NetBSD
● no libc for rump kernels,

applications ran partially
on the host

Step 3.5: visions (not an actual step)
ca. turn of the year 2011/2012:

“An anykernel architecture can be seen as a gateway
from current all-purpose operating systems to more
specialized operating systems running on ASICs. The
anykernel enables the device manufacturer to provide a
compact hypervisor and select only the critical drivers
from the original OS for their purposes. The unique
advantage is that drivers which have been used and
proven in general purpose systems, e.g. the TCP/IP
stack, may be included without modification as
standalone drivers in embedded products.”

Step 4: portability to POSIX
2007-2012, 2012-
buildrump.sh (2012-)

4.4STEP: beyond POSIX (201[234])

Step 5.1: rumprun
(2013, 2014)

platform

hypercall interface

 rump
 kernel

hypercall implementation

T
C

P
/I

P

fil
e

sy
st

em
s

de
vi

ce
 d

rv
s

sy
sc

al
ls ...

glue code

Step 5.2: rumprun
(2013, 2014)

platform

hypercall interface

 rump
 kernel

hypercall implementation

libc

syscall trapsrump kernel calls

application(s)

userspace libraries

T
C

P
/I

P

fil
e

sy
st

em
s

de
vi

ce
 d

rv
s

sy
sc

al
ls ...

glue code

FINAL HALF

conclusions & other tidbits

All le gory technical details:

http://book.rumpkernel.org/

2nd edition is work in progress
Will be available as free pdf, hopefully printed too

Community

● http://rumpkernel.org/

● http://repo.rumpkernel.org/
– BSD-licensed source code

● http://wiki.rumpkernel.org/
● rumpkernel-users@lists.sourceforge.net
● #rumpkernel on irc.freenode.net
● @rumpkernel

The actual conclusions

You can make an omelette without
breaking the kitchen!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

