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RUMP KERNELS
and

{why,how} we got here



  

Motivations

● want to run an application, not an OS
● want a better operating system
● “operating system gets in the way”



  

FIRST HALF

what is an operating system



  

Summary of OS's

● drivers
– for enabling applications to run

– n*106 LoC

● optional goop defining relation between drivers 
and applications
– for protection, resource sharing, ...

– 103 – 105 LoC
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SECOND HALF

what is a rump kernel
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rump (n):

small or inferior remnant or offshoot; especially: a 
group (as a parliament) carrying on in the name of 
the original body after the departure or expulsion 
of a large number of its members



  

rump kernel (n):

small or inferior remnant or offshoot; specifically: a 
monolithic OS kernel carrying on in the name of 
the original body after the departure or expulsion 
of a large number of its subsystems



  

A rump kernel does not provide 
threads, a scheduler, exec, or 

virtual memory, nor does it require 
privileged mode (or emulation of it) 

or interrupts

> runs anywhere
> integrates into other systems



  

Wait, that doesn't explain where the 
drivers come from

< anykernel (NetBSD)
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same thread
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e.g. Genode OS, Xen,
userspace, bare-metal,

sy
sc

al
ls ...

Platform-independent
glue code (~104 lines)glue code

AN EXAMPLE!



  

THIRD HALF
(with operating systems, expect the unexpected)

how rump kernels happened



  

ad-hoc shims

Step 1: RUMP (2007)

NetBSD userspace

hypercall implementation

unmodified file system driver

VFS emustubrump kernel

userspace fs framework
(userspace part)
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Step 2: UKFS (2007)

userspace

kernel

Q: how hard can implementing
a few syscalls be?

A: very

userspace

hypercall implementation

unmodified file system driver

ad-hoc shims

VFS emustubrump kernel

UKFS

application (e.g. fs-utils)



  

Step 3: a lot
(2008 - 2011)

userspace

hypercall interface
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glue code

syscalls, vfs, etc.

hijack

application / service

● support for all driver 
subsystems

● isolation from the host
● stable hypercall interface
● anykernel completed
● production quality
● rump kernels used for 

testing NetBSD
● no libc for rump kernels, 

applications ran partially 
on the host



  

Step 3.5: visions (not an actual step)
ca. turn of the year 2011/2012:

“An anykernel architecture can be seen as a gateway 
from current all-purpose operating systems to more 
specialized operating systems running on ASICs.  The 
anykernel enables the device manufacturer to provide a 
compact hypervisor and select only the critical drivers 
from the original OS for their purposes.  The unique 
advantage is that drivers which have been used and 
proven in general purpose systems, e.g. the TCP/IP 
stack, may be included without modification as 
standalone drivers in embedded products.”



  

Step 4: portability to POSIX
2007-2012, 2012-
buildrump.sh (2012-)



  

4.4STEP: beyond POSIX (201[234])



  



  



  



  

Step 5.1: rumprun
(2013, 2014)
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Step 5.2: rumprun
(2013, 2014)
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FINAL HALF

conclusions & other tidbits



  

All le gory technical details:

http://book.rumpkernel.org/

2nd edition is work in progress
Will be available as free pdf, hopefully printed too



  

Community

● http://rumpkernel.org/

● http://repo.rumpkernel.org/
– BSD-licensed source code

● http://wiki.rumpkernel.org/
● rumpkernel-users@lists.sourceforge.net
● #rumpkernel on irc.freenode.net
● @rumpkernel 



  

The actual conclusions



  

You can make an omelette without
breaking the kitchen!
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