
DIOS
A distributed Operating System

 for your Data Centre

University of Cambridge
Computer Laboratory

Malte Schwarzkopf
@ms705

JSON, Protobuf object

Cached in-memory object

GFS, HDFS “file”

Cluster-level tasks

User-level threads

OS kernel processes

VMs, Containers

Hardware threads

OS memory mapping

Kernel VFS file

Abstraction turtles all the way down...

BAD for...

Good for…
abstraction portability

scalability

co-scheduling

locality optimisations

data-flow tracking

security

The plan:
vertically integrate abstractions

Distributed application

Distributed infrastructure

Distributed operating system

All use: one distributed object abstraction

Machine A Machine B

distributed
file system

cluster
scheduler

distributed KV
store

node kernel

net
stack

naming/
caps

thread
sched

node kernel

net
stack

naming/
caps

thread
sched

user job: web
serving

user job:
log analysis

user job:
MapReduce

distr. name
service

DIOS

network
coord.

Narrow syscall API: 11 system calls

Global naming: UUIDs for objects

“Translucency”: contextual references

a3c93
f2379
8d

ref_t

kref_t Kernel

User
ref_id: 1234
name: a3c93f23798d
access: rw-
parent: fc1cbc79ca12

ref_id: 1234
persistent: false
proximity: local
fate_shared: true
buf_size: 4k

 Host kernel “Legacy” syscalls DIOS syscalls

DIOS extensions

DIOS
process

Legacy
process

hybrid
process

Cluster
scheduler

User

Kernel

DIOS
Adaptation
Layer (DAL)

dios_dal_linux.ko

kernel
patch

(~500 LOC)

user process

DIOS core module dios.ko

reference
table

name
service

Demo time!

(this is where the kernel crashes...)

M M M

R R

input

word count lists

map

reduce

<”cat”, 1>
<”dog”, 1>
<”cat”, 1>
<”fish”, 1>

<”cat”, 2>
<”dog”, 1>
<”fish”, 1>

Status: alpha (at best!)

Work in progress:
❖ High-level language support (working

on Rust runtime)
❖ libd C standard library
❖ MapReduce, web server,

key-value store ...

Malte Schwarzkopf
@ms705

in collaboration with

Matthew Grosvenor
Ionel Gog

Andrew Scull
Matthew Huxtable
Gustaf Helgesson

Steven Hand

DIOS is a Cambridge Systems at Scale project:
http://www.cl.cam.ac.uk/netos/camsas/

http://www.cl.cam.ac.uk/netos/camsas/
http://www.cl.cam.ac.uk/netos/camsas/

Gratuitous Docker slide :)

❖ DIOS is Docker-compliant!
➢ isolate containers by restricting name resolution
➢ but DIOS objects can also be shared by containers
➢ Firmament scheduler can manage containers

❖ Benefits of DIOS + Docker
➢ data-flow tracking + IFC across containers
➢ can allow legacy syscalls within containers, but only

DIOS syscalls on the host (“hypervisor mode”)

Matrix multiplication (memory-bound)

Pi approximation (CPU-bound)

12.6% miss

65.6% miss

~12,000 instr. per
mem access

~40 instr. per
mem access

Task monitoring

Concept slides
Bullet points follow!

Why?

● Vertical integration of abstractions
○ enables optimisations, e.g. co-scheduling, locality

● Security, auditing, IFC
○ restrict and monitor data-flow
○ no way to bypass

● Because we can :)

How?

● Narrow syscall API: 11 syscalls
○ co-exist with POSIX, or replace

● Distributed object abstraction
○ object ~= “blob of bytes, stream of bytes or task”

● Security: distributed capabilities
○ Names: resolvable identifiers
○ References: FD-like handles with context info

Status?

● Prototype: Linux kernel extension
○ Tiny kernel patch (~500 LoC)
○ Two kernel modules

■ Adaptation layer: GPL
■ DIOS core: BSD

● HLL: Rust runtime port in progress

Demo!

● Simple streaming MapReduce
○ WordCount

